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where Tw is the truncation error.

Using the relations

aum

(1=y)Unt1Un" = Untyik 5™ +0(k?),
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into the right side of (5.330) and expanding by Taylor series, we get

; aum oUn 3Un dUnm & Un
¢[xm, tm Um, ax ’ ax2 ..I+ 71k¢:+'}’1k at ¢u+*k 3t2 U
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+0(k2+-h*) = Tm (5.332)

In view of the relations

OUpn 0Um 02Un
¢ (xll; tny U:v Btm ’ axm ’ afc]zm) =0

and
— buty = byt Putts+ bucttns + Pusstixss,
the equations (5.332) may be written as
Tm = k(3 — v )puttn+0(k2+4) (5.333)

Thus, the values 7, = 0 and 1 give the difference schemes of 0 (k+-A?) and
the value y; = 1/2 gives an high accuracy scheme of 0 (k24-/2).
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For examining the convergence of (5.329), we determine the error equa-
tion. Substituting em = um— Un into (5.329), subtracting (5.328) from (5.329)
and applying the mean value theorem, we find

n+l —e
[(l—y.)e +Yl€"+l]¢u+[ m]‘ﬁlﬁ‘*‘[, I"vs ((l 'yl)ez.

i) ]¢u,+[:7 S~y trie s | due
+0 [k(A—y)+k+1] =0 (5.334)

where the function has been evaluated at an appropriate intermediate point.
Simplifying (5.334), the error equation is obtained as

1 [ 2 = Pu.+ 733 % ¢un] €"+l+[ % rﬁu,—{—y‘ (¢,, 7 s )] €n-i»i
-H’i[’z'z d’ux'i-ﬁtﬁu,,] L= (1—yy) [:-2_11. Pu.— -h—z-a/:u,, ] & _

+[-Ilc_ bu+(1—=71) ( fl/’:i+712§ P ):I e —(l-y) [‘él—h' ¢u:+7§7¢uu ]
+0[k(3 —v)) +k2+H7] (5.335)

This equation enables us to examine the stability and convergence of the
difference scheme (5.329). The value ¥, = 0 in (5.335) gives an error equa-
tion which on simplification can be written as

duentt =r [— hou. _‘/’uxx] €m—1 +[ i —k<f>u+2r<l>uu] €m

[ = b Jroderun (5.336)
We may now use the maximum analysis to establish the convergence of the
difference scheme (5.329) with v, = 0. We assume that
du = a* > 0, du.. <b* <0
[ dul+ | $ue| —ua <, T (5.337)
From (5.336), we get

:t'%-h¢"x—¢"(x = - —;—hc*—b* =0

*
h<-2, (5.338)
and
du— kdu+2rdu.. > a*—kc*+2rb* = 0
or

.
0< k< s (5.339)
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Thus, the convergence and stability of (5.329) with y, = 0 are assured
provided /s and k satisfy (5.338) and (5.339) respectively.

The explicit difference.scheme (7, = 0) will require the solution of only
linear algebraic equations at each time ievel. The implicit difference schemes
(y; = 1, 1/2) lead to the nonlinear cquations at each time level which must
be solved by an iterative process. We now derive implicit difference schemes
for a few special cases of (5.328). The difference schemes will be modified
such that the resulting algebraic equations are linear.

Let us assume that (5.328) has the form

ou__ 0 ou
clx, t, u)‘r,; = 5;( plx, t) 3x) q(x, t, u) (5.340)
The integral identity with
d
K@y x, t) = clx, t, u) a——:‘%—q(x, t, 1)

may be used to obtain the difference schemes for (5.340).
We have

(=) ™)+ yiclum) daim—rl(L =y pm’ '8t
+ 8 pmdam)]+k[(1 — gt )+ yiglum)] = 0 (5.341)

where the explicit dependence of ¢ and g on x and ¢ has not been written,
The value y, = 1 gives an explicit scheme

C(u':ln)Alllf':: - rsx(pztsxll::r)+kq(ll::'r) =0 (5.342)

of order of accuracy (k+h?).
For v, = 0. we get the difference scheme

et —r8 L pu! St ) +kq(unt') =0 (5.343)
with crror of 0(k+4?).
For y, = 1/2, the Crank-Nicolson scheme is written as
[eCumt"y + ctim)]Aitm— r[dx( a8 amt')
+8,(prdattm)]+klgQint ') +q(um)] = 0 (5.344)

with error of O(k*+12).

The implicit schemes (5.343) and (5.344) lead to the nonlinear algebraic
equations which must be solved by an iterative process. These equations are
nonlinear because g(x, f, u) and c(x, t, u) are to be evaluated at the advance
level fusy. Since um™' = um+0(k), we modify slightly the difference scheme
(5.343); both ¢ and g are evaluated at the known level t, so that the result-
ing algebraic equations at each time step remain linear and can be solved
easily by.elimination. The modified Douglas difference scheme is given by

1
‘N

C(X,,,, rll+|- ”:I'I)Alul'lll—rsx(pnl‘-]Sx”:l)'i—kq(x"ls In L1e "!:'1) = 0 (5345)
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which still retains the order of accuracy (k-+h2). The nonlinear algebraic
equations in (5.344) arise from the use of [q(xm, tn+1, up" )+q(x,,., t.., um)]
and a similar relation for ¢c. We approxxmate it by 2¢(xm, tat1/2, ! ) and
determine up' % in terms of up. Using the differential equation, such an

approximation is easily obtained as

n+1/2 1 aum
ul" = m+ 2 at
= um+ —;— k {[5;‘( )/ %)—q(x, t, u)] / clx, t, u)}:'+0(k2)
n k — n n n
= um+ 26‘(——;"5 [h 23x(Pm§xum)—9(um)] (5346)

Equation (5.344) with the help of (5.346) can be written as
2 Pyl —um) = P8pt 8 ")

+8.pht 138 um)]+2kq(umt'’®)  (5.347)
where

ni-12 __

i "2 = ymt s (028, (p" %8 i) — q )]

2c(u")
The evaluation of p at t = t41,; is done to simplify the calculations in im-
plementation of (5.347). It does not affect the order of accuracy of the diffe-
rence scheme. Equations (5.347) are linear algebraic equations and can be
solved by elimination. For g¢(x, t, u) = 0 and p(x, t) = 1, the differential
- equation (5.340) becomes

.
c(x, 1, 1) g_:‘= -g—x% (5.348)

and for which the difference scheme of 0(k2+4A4*) is found to be

[t )+ clula)] (—Tl"—)

r

=8§[1——61r :.] "+'+8’[1+ cm],,,,, (5.349)

Notice that the algebraic equations in (5.349) are nonlinear as a result of
the coefficient of the time difference. In general, they must be solved by
iteration. This can be accomplished by predicting an approximate value
#9"*! by some means such as

[0l141 — B qum
ST
or

(1] 1 t n-1
uE"]n+ = 211;71—"»!
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using wolntl o evaluate the difference coefficient, and solving the linear
equations for u"*' by elimination. Then, find u m"” from up"*!, etc. ‘Un-
less dc/du is quite large, the resulting iteration should converge quite rapid-

ly. Next, consider that Equation (5.328) is of the form
ou\ou J%u du
¢ ( t Z&)a: T ( u 3x) (5.350)

The Lees difference scheme for (5.350) is based on the linearized Crank-
Nicolson difference scheme and it is given by

c ( u",,.*"’,-—l- b :'+|/z) W =) = _;_ 82 +ul)

+kf( n+l/2’;’ 3 un-HIZ) (5.351)
'where
‘ um' 1 = —;—- u.'L“—-%— m
and

ul? =Y + ["-28xu'n+f( Um 3= Bxdxtim )] (5.352)
26‘( my-7 A HxOxU m)

If £ is a linear function of u, we may replace
f( ufn'_*"z —’11— p,qu,':.““) byf( (u"+'+um)/2. 5 P xu:.“’z).
and if f is a linear function of (Ou/0x), we may replace
£, L a2 by g (6 b )

The above scheme is also termed as extrapolated Crank-Nicolson difference

scheme.
The Douglas-Jone scheme or predictor-corrector method for (5.350) can

be written as

n n n r n41/ __
P:c ( Um, '2!"1 Sxtim ) u;'+"3 "um) = ‘5‘ szum“ 2 + f ( "m'Zh vllm )

C: c( L 2'l—h3xu:-+”2) (Ut = ) = —%Si(u,':.+'+u",.)

+kf( i, 2II| ”:'+m) (5.353)

It ‘is clear that the P-C methods give rise to linear algebrs equations to be
solved at each time step.
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where
k k
c= I and r = e

For linearization we may put
un'' = um -+
where Om = un —ul,

into the above system of nonlinear equations and neglect the term 0((25)?)
to get the following system of equations

oh + = emadalul o)=L 1oL
= rBhul = mBiul )
r —(—] +-l‘- tm=1 JOm—1+(14r) U — (—1- r-——l—c - )v"
o 2 r 3 ClUm—1 Um—y 'm 2 3 Um+1 |Um+1
= ( st otun?) =20 (il et
Substituting r = %, c= -l-l§ and simplifying, we obtain
= (6+Um—1)m—1+8405 — (6—tihs1)ths1

= (12“,’ u:l_-l) u:u-l—24u:-+(l2—u:-+|) u:+lsn = 0! ]o 2, ...

1<m<2
The initial and boundary conditions become
: w = 2"‘; 3 21766, 8= 2"‘; 3 = 36276

w=0u =0n=012,..
We have:
n = 0,—(6+um-1) Om—1+840% — (6 =13 11) D+t
= (124 tim1) 1= 2488+ (12 15 41) w0
m = 1,—(6+u) 05+ 8407 —(6—u3) o3
= (12+ud) ug— 28ui+ (12~ 1) 13
m = 2, —(6u) of 8403~ (6 —13) o}
' = (1244}) u?-‘24ug+( 12-uf) ul
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or 8407 —2.372407 = —21.8667
—~8.17660 48403 = —56.2056
o] = —0.2799 ) = —0.6933

4 = ud+of = 2.1766—0.2799 = 1.8967
ul = S+l = 3.6276—0.6963 = 2.9313
" The analytic solution is given by

i, 1) = reesn T
We obtain the solution values

u(xy, ;) = 1.8756

u(xz, t;) = 2.8623

5.12 DIFFERENCE SCHEMES FOR EQUATIONS WITH
CYLINDRICAL SYMMETRY ‘

The cylindrical symmetric diﬁ'usibn equation is given by
ou _ o 1 du
ot  orz ' r Or
where r is the radial space variable. The appropriate ihitial, boundary and
regularity conditions are of the form

(5.361)

lr, 0) = fr), 20D~ 0, u(R, 1) = 8 (5.362)

where 0 < r < R. We define the mesh points in the r-t planc by the
intersection of the circles rm = mh, m =1, 2, ... and the lines ¢ = nk,
k=0,1,2, ... and denote the approximate values of u at these points by

ub, h and k being the mesh spacings in the space and time directions res-
pectively.

A simple explicit difference scheme to (5.361), of 0 (k-+Hh?), is written as
& = 2 (1= 2 a1 -20n 2 (14 2 Vuran
(5.363)
where A= k/h? and p = h/rm.
The stability analysis derived here is as in the case of a constant coefficient
difference scheme, the variable coefficient rs = mh is taken care by studying
the stability limit for m = 1,2, .~ -Applying the von Neumann method to

(5.363), we obtain the stability condition A< —li-
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__N_
N+h(n)
where N represents numerator in (5.376) and
h(n) = 4(1—n)f(), n = cos Bh

fn) = (bl+bz)[(bl —b)(1=7)+ " (n+z>]

+(1+9)ci+c2) (cl —cy— —;’—) .

For stability, we require | £ | < 1. Hence, if (7)) 2 0. the difference scheme
(5.374) is stable. Since | 7 | < 1, this gives us the condition that f(n) = 0.
We have

bi+by > 0, by—=b, >0
f(=1) = (b1+bz)[2(b1“b2)+r-""'] >0

Q) = (‘1—2“_":‘57—232[4'"(12'*' )(3m+m )

(2 (ot ) =2

where we have substituted r,r = mh.

For m =1 /(1) >0ifAL £4_ while for m > 2, f(1) > 0 is satisfied for
242 242
AL 5 Hence, the method (5.374) is stable for A < -5

5.12.2 Approximation at the boundary
Consider the differential equation at the node r = 0. We need to write an

approximation for %ti at r = 0. We have

1 du\ _ (% . Oujor
(dz+r ar)_(ﬁ) o TR

32u
3r2
Thus, the differential equation (5.361) for r — 0 becomes
ou _ 0%
% = 2372 (5.377)

The difference schemes for (5.377) can easily be obtained, using the relation
u”y = uj. Thus, we have the following difference schemes of

G) O(k+h2)
ust! = (1= 4\ui+art (5.378)
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(i) O(k2+h?)
[1+aA(1—yla ™" — 41—yl !
=(]- Ay, )uo-+4Ay ut (5.379)
(iii) O(k2+h*)
G+ 120u8+ +(1 = 120u*!
=(5 - 120)ug+(1+ 120} (5.380)
5.12.3 Two space variables
Here we consider the differential equation
du o 1 0u , du

subject to the initial and boundary conditions of the form (5.153) and the
condition '

ou (0,2, 1) _ e g
Fra 0 (5.382)

The explicit and implicit difference schemes discussed in Section 5.12.2 can
easily be extended in the case of the two dimensional equation (5.381). For
cxample, the explicit scheme (5.363) becomes

ursl =2 (l—.- -}2—,)147-1,»: +(1—4Nulm +A (H— ’g)u7+1,m
+Mulmar+ulm—1) (5.383)
where uf m is approximate value of u(lh, mh, nk),
r= lh, Zm = mh, t, = nk and p == % .

1

The stability condition for (5.383) is A < 7. For r =0, the differential

»|

equation (5.381) becomes
du 3y . u
% = 2T
To use with the explicit scheme (5.383) we write an 0(k-+4?) approximation
to (5.384) as
u(')';.l = (1 —6A)U(')‘,m+4Au’l'.m+A(U(’)',m+l+u'(;,m—|) ’ (5385)

(5.384)

where we have u1,m = ui.m. The eqixation (5.385) is-stable for': < %

The Peaceman-Rachford ADI method for (5.381) and (5.384) my be written
as .
1
nt1j2___n n 1 n n
_ @) u—'-ﬁ—k—/iy—'—'—" = h2 83141,:.”2-}- " ;L,S,ulj'nuz-l-h'z 82ulm



366 NUMERICAL SOLUTIONS

Solving we get
uo = 0.8576 u} = 0,7270 ul = 0.3903

5.12.4 Results from computation
We have solved the differential equation (5.361) subject to the following
initial and boundary conditions:

() u(r, 0) = Jo(ar), 0<r<i

ou(0,1) _
e =0, u(l,f)=0

where « is the first root of Jo(x) = 0,
with the exact solution
u(r, t) = Jo(ar) exp [—a2¢]
(i) u(r,0) = Jo(r), 2<r <3
u(2, £) = Jo(2) exp (—1), u(3,1) = Jo(3)exp (—1) (5.388)
with the exact solution
u(r, t) = Jo(r) exp (—1)

Using the schemes (5.365),y, = —; and (5.374), we have done the integra-

tion with s/ =.1. The integration is carried upto t = 4.5 with values of
A =0.3,0.5, 1, 3, 5. The maximum absolute errors are given in Table 5.13,
It is noted that the error in the numerical solution increased considerably in
the beginning for both implicit methods and then decreased. The computa-
tions show that the method of 0(k2+h*) produces better results than the
method of 0(k2+42),

TABLE 5.13 MAXIMUM ABSOLUTE ERROR, /1 = 0.1

————

Problem (i) Problem (ii)

A Steps Formula Formula Formula Formula

(5.365) . (5.374) (5.365) (5.37%)
0.3 500 0.261—4 0.980—8 0.127—5 0.199--8
1000 0.916—8 0.348—11 0.282—~6 0.446—9
1250 0.154—-9 0.000 0.133—6 0.211—9
0.5 300 0.247—-4 0.810—-7 0.127—5 0.298—8
600 0.891 -8 0.279—10 0.283—6 0 666—9
750 0.150—-9 0.000 0.155—6 0.315—-9
1.0 150 0209—4 0.405—6 0.127—5 0.867—~8
300 0.819-8 0.139—-9 0.283—-6 0.193—8
375 0.140—9 0.000 0.137—6 - 0.913-9
3.0 50 0.306—5 0.575-5 0.130-5 0.256—6
100 0.403—8 0.127—8 0.290—6 0.278—17
) 125 0.805~10 0.206—10 0.137—6 0.131-7
5.0 30 0.308—4 0.103—4 0.136—5 0371—¢
60 0.850~8 - 0.347—8 0.303—6 0.828—7

75 0.144—9 0.534—10 0.143—6 0.391-7
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Bibliographical Note

An excellent survey of numerical methods for the parabolic equations with
an extensive bibliography is given in 69. The other texts that deal with the
difference methods for parabolic equations are 9, 12, 86, 184, 203, 217 and
256. Particularly 184 and 217 are recommended.

The difference schemes for the heat flow equations in one space dimension
are available in the following references; explicit schemes, 72, 107, 218,
implicit schemes, 53, 56, 131, 138, 155 and 160. The von Neumann method
has been used for the stability of the difference schemes in 189. The Crank-
Nicolson difference scheme has been applied to solve numerically the para-
bolic equation with mixed boundary conditions in 29 and the stability ana-
lysis has been carried out with the help of the matrix method in 236. An
explicit unconditionally stable scheme for the heat flow equation in two
space variable is given in 164.

The alternating direction implicit (ADI) methods have been discussed in
15, 17, 31,71, 73, 78, 79, 97, 124 alid 195. The difference schemes for the
parabolic equations with variable coefficients and with or without mixed
derivatives are found in 123, 124, 182 and 233. The stability analysis of the
difference scheme is examined by using the Widlund analysis in 254. The
difference schemes for the solution of the fourth order parabolic equations
are given in 6, 45, 47, 52, 75, 77 and 132,

The nonlinear parabolic equations are studied in 70 and 170. The con-
vection-diffusion equation is discussed in 224. The cylindrical heat conduction
equation is trcated in 7 and 125, '

Problems

1. The function u(x, 1) satisfies the equation

ou _ 9u
.5[‘ = 5;2+cu,

where c is a constant, and possesses continuous and finite derivatives

of sufliciently high order. Obtain the discretization ecrror of the
formulas

(i)l: l-——;—-crhz—-;— r3§]u',',,+' = [ l+—;—cr/13+-%- r8§]u:,

.. 1 | 1 1 n
(ii) [ 1—7 crhz—-i—( r——g-( 1~—2—crllz))8§]um+'

=[ H—.% crh2+—;~(r+%( H—l? cri? ))512(] o

What stability criterion is applicable?
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where B = 1/M when applied to solve the differential equation
Ou/dt = J%u/ox? in the domain R = [0 < x < 1]X[r > 0] subject to
the initial and the first boundary conditions lead to the system of
(M —1) linear equations in (M —1) unknowns of the form

Au"t! = Bu"4f"
where
= [ U ... g7, 5 = n, n+1.
Find
(i) the forms of A and B;

(ii) the stability condition for all « > 0;
(iii) the truncation error at the point (mh, (n+1)k)

The system of equations is solved with the help of the Jacobi iterative
method and the Gauss-Seidel iterative method respectively. What
convergence criterion is applicable? Define the SOR method and
obtain the optimum relaxation factor.

Consider the differential equation
ou _ o
dt ~ Ox?

in the region R = [0 < x < 1]X[t > 0], subject' to the following
initial and mixed boundary conditions

u=f(x),t=00<x <1

3—u=0,x=0,t>0
x

2
—a%=—cu+d,x= ,t >0

where ¢ and d are positive constants. Derive a matrix equation of the
form i
utl = Au"+b
for an explicit difference scheme
umt' = (1=2r)um+r(um—1 1)
where r = k/hi2 and h = 1/M.

Use central differences to approximate the boundary conditions. Show
that this difference scheme is stable when r < 1/(2+ch).
Derive also a matrix equation of the form

Bu"t! = (4I—B)u"+f

for this partial differential equation by using a Crank-Nicolson implicit
difference scheme and show that this is always stable.Use central
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differences to approximate the boundary conditions. Discuss briefly the
stability of the two methods when ¢ is a negative constant.

10. The difference representation

1.

untt = r(1—ah) um-1+ (l—2r( 1- -;—-bhz)) up, +r(1+ah)um+i,

1<m<M-1,n=012,..

where r = k/h2, is to be used for the solution of the equation

ou _

at ~ ox*
subject to the initial and first boundary conditions over the region

R=[0<x<I1Ix[t>0]
Show that this would give rise to a recurrence relation
u™!l = Au"4-c

+2a 2% +-bu
X

where
we=lujuy. w0 s=nn41
giving the form of A. Derive the stability conditions for this scheme,
Prove that when the difference scheme
it = oy (1= 2r)um +rums

is used to solve the equation

u_ 0 _

at~ ox*
with the initial condition .

u(x, 0) = f(x), =0 < x < 0,1 >0

and it is assumed that u has bounded derivatives of sufficiently high
order then

o< x oot =0

len | < —;—( r+%—) FMyts

where
du
dx*
and the round-off error is neglected.
Show also that

0<r<-;—, < max |fY9x) | = M,

—~00L X-{00

o L
|€ml < 135h‘M61n

when r = —é—,M.; = max |f9%x)|

—0a < x<00
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18.

19.
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Use the von Neumann method of stability analysis to show that
formula (i) is stable for 0 < r < 1/(4—ch?/2), ¢ < 0 but formula (ii)
is unconditionally stable for ¢ < 0. Also, formula (i) is relatively sta-
ble for

0<r<—4—_—1¥—ch—2,h<\/8—/c,c>0

Find the order of accuracy of the difference scheme

1-———— 8| [1-—— L & |t
— s — e 2
2(1 zchz) 2(1 2ch)
ch r ‘o2 r 2| n
_ b 8| [ 1L 82 | ulm
— 2(l+2ch) 2(l+2ch)

where u(x, y, ¢) satisfies the equation

ou_ 0%  d%u
o oxe T g
The Peaceman-Rachford ADI method for the equation
ou_ 0%
oo gt
may be written in the form
un+l /2_ un
Lim e % L2 = h28% ul P+ b2 ulm 4 cul
2
nt1/2 n+1
M U osd P b8 U el
2

Derive an equation relating uf % and u/'» and show that the resulting
difference scheme is both consistent and unconditionally stable.
The Douglas-Rachford method for solving

3u azu o
T ox? ayz
is given by
(1- r&%)u‘?t.' = (14r8)ul'm
(A =r8uln! = u'Th =18} ufim
Show that the truncation error of the formula is of 0(k +A2). Write the
difference scheme in the D’Yakonov split form.
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21.

Consider the heat flow equation in two space dimensions
6u o0 82u
ax? 3y2
in the domain®=[0 < x, y < 1]x[t > 0], subject to the initial
and boundary conditions
u(0, x, y) = sinwax sinwhy, 0 < x,y <1
ut,x,y)=0,t>0 ‘
on the boundary of the domain,
The theoretical solution of the problem is
u(x, y, 1) = exp [—n¥«2+ B2)¢] sin awx sin Pry
Obtain the decay factor of the following difference schemes:

)] 17:u"+l = r(83+8})ulm

(i) Pauph! = r@+ 8l

(111)[1——r32][1—— 82:] ml = [1+ r82:|[1+—r82] ulm
-3~ (-2
= [1 + 5-(;+-6—)8§][1+7(r+ é )sz]ulm

Compare, in the limiting case 2 — 0, the decay factor of these various
methods and state which one of the methods will give more accurate
results.

. The two step difference method

Ui P —ulm sz mtyz 10, n
= ah 8,\' Ur.m +— bh HxHyuI,m
k 4
n+1 n+1/2
Him ZUlm = L h2t o0 4 ho2c8? o]

where a, b and ¢ are constants and
qu?.m = “;'H.m"-“r—l,m
Hytllm = Ulm41 = Ulm—1
is used to solve the equation ’
2
R +e s
a>0,¢>0b*~a <0

Find the principal part of the truncatlon error of the difference scheme
which is a relation between ufm ! and uf m.
Also, prove that the difference scheme is unconditionally stable.
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Determine the differential equation to which the difference scheme will
correspond to according as

(i)k»O,h»O,[%]—)O
(ii)k—*O,h—éO,[-Zk—:,=c

The Jacobi and Gauss-Seidel iterative methods are used to solve the
system, find the convergence conditions. :

. The fourth order parabolic equation

3-u du =0
352 toxe
may be replaced by a system of equations
W __ Pw dw o
ar  Ox2’ Ot dx?

Consider the following .schemes:

. n-1 n 2. n
(l) U —Up =— raxwm
n4l1 n 2 n+l
Wor = Wm = 8% Up,
n— n 2 n
(") l’m == - 2"(8 Wm -+ bt Win)

W:nH == wn l-’ 2"(8v vm + bs v”')

where b is an arbitrary parameter.
(a) Show that (i) is stable if r < 1/2.
(b) Show that the truncation error in scheme (ii) is of 0(k2 + h2 -+ (k/h)?)

and the scheme is stable for 0 < r2 < 1/16(b+1).
The equation

2 ) 20 u = U d-u
g2 TG = Vo

with appropriate initial and boundary conditions governs the vibration
of a bar under tension. The equivalent system of equations is given by

ov 32w
o= %% “’
dw 62v av

wherev=g-it-‘andw=a +b3u
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Consider the following difference schemes:
n4l

@) 2 a8+ A b
k
n+1 n
Wm k_WM — ah__282 n+l+bh l"’x xv:l+l

ntl n
(ii) ”—k‘—”"' = —bah 283w + Siwim)

+ 3ok~ = W Wi 1 = Wim—1)

wnm-i-l_wn

k = %ah 2(82 v'l+] D:l,,)
+ibh l(I)m-}‘l—vm l+vm+l_vm l)

Show that formula (i) is stable for 0 < ar < 1/2 and formula (ii) is
stable for all values of r.
30. Obtain a difference approximation to the partial differential equation

3ua ]

‘with initial and boundary conditions
u(x, 0) = 300+3(x-4)2,0 < x < 4
u(0, 1) = 348, u(4,1) = 300,r = 0
‘Use the formula valid for p(x)EC?, u(x)€ C*

( )“—] 2h2 ((Pm+l + Pm) (llm+| um)

—(pm+ P 1)t —ttm_y)) + O(h2)
where
u(xo+mh) = u, etc.

Choose xo = 0, A = 1, k = 0.001 and integrate until ¢ = 0.003.
(BIT 4(1964), 197)
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Difference Methods for Hyperbolic Partial
Differential Equations

6.1 INTRODUCTION

The hyperbolic type partial differential equations are usually associated
with initial value problems' or initial boundary value problems. Thus, the
derivation of the difference schemes for the hyperbolic equations follows the
similar procedure as that of parabolic equations in the previous chapter. We
now discuss difference schemes for some important hyperbolic equations in
one or more space variables.

6.2 DIFFERENCE SCHEMES FOR HYPERBOLIC EQUATIONS IN
ONE SPACE VARIABLE WITH CONSTANT COEFFICIENTS

The simplest hyperbolic problem is that of the vibrating stringk
Pu_ |
o ox?
in the domain R = [0 < x < 1]1X[¢t > 0], satisfying the following initial
conditions ‘

(6.1)

u(x, 0) = fi(x)

a___“g’:' 0 _ fix), for 0<x<1 (6.2)

nd boundary conditions
u(o’ t) = gl(t)
u(l, t) = git), forall t >0 (6.3)
We place a mesh of poinis (xm, ts) on R, where
Xm =mh,m=20,1,2, .... M, Mh = 1,
t.=nk, n=20,1, 2, ... (6.4)
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The exact difference replacement of (6.1) at the nodal point (Xm, tn) is
given by
T % ) 5, \2
( sinh ‘—2—) w(Xm, tn) = P (smh’l ——2—) w(Xms tn) 6.5)
where p =k/h is the mesh ratio and
4( sinh™! é—)z = 32-—-—]‘3“4-L 86— (6.6)
2 12 90 ‘

The explicit and implicit difference schemes for (6.1) will be obtained by
approximating equation (6.5).

6.2.1 Explicit dfference schemes
An explicit difference scheme for (6.1) is given by
s = p*Saim
which may be written in the form _
upt! = 2(1-—p’)u"m+p’(u3._1+u,'iz+1)--u:._l (6D

where ul is the approximation to (Xm, ts). This scheme in schematic form
becomes

If each term in (6.7) is expanded in the Taylor series about the nodal point
(xm, ta) and the function u(xm, =) satisfies (6.1), then we get the truncation
error

1 %u(Xmy tn)
— L2 zl 1 a2y O WXm In)
Tm = k2h lz(p 1) ok

__1__ . asu(Xon, tn)
g B 1) TG +] 6.8)

For p = 1, the truncation error vanishes and so the exact difference re-

presentation of (6.1) is obtained as

upt! = u'r:u—1+u"m+1—u;_' 6.9)
In order to start computation we require data on the two line £ =0 and
¢t = k. The first condition in (6.2) gives 43, on the initial lines as

WL, = filmh),0 <m <M (6.10)
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We can use the second condition in (6.2) to find values on the line 7 = k.
Substituting the central difference approximation for the derivative, i.e.

ok
in the second condition in (6.2) and climinating ' from (6.7) for n = 0,
we get the formula to give the values on the first level

uh = (1-p?) fl(’nh)"'kfz(mh)'i'—;- PLfm=T1h)

+film+1h)], 1< m< M-1 (6.11)
Alternatively, if we use the truncated Taylor expansion '
au,,. o,
um+ 'E_k 3t2 A
and replace the first and second derivatives by their values from (6.2) and
(6.1) then also we get (6.11).
The boundary conditions (6.3) become

w=gianduy =g3,n=12, .. -(6.12)

Formula (6.7) may now be used to advance the computation for n > 1.
Replacing um by £ ¢!tk we get

e+ = 2-4p st (22) (6.13)
£=24¢(+1=0 (6.14)
where A = 1-2p?sin? (Ezﬁ)

The solution of (6.14) is given by
§1 = A+vV(42—1), £, = A—+/(42-1)

From (6.14), we find that §, = 1/¢,.
fA>L1&|>Lifd< =L 1 &> Lifl4|<LI& =& =1
Thus, for stability, —1 <A< 1lor =1 < 1-2p?sin¥Bh/2) < 1. Hence,
we get p < 1. This is the criterion for stability.

We now consider the interpretation of the stability requirements. The
analytic solution u(x, f) of the differential equation (6.1) subject to the
initial conditions

a0 =10, 20D g, o< x <o, (615)

can be obtained in the form
x4t

“x,0= 5 -0+t [ snd 616

This is called the d’Alembert solution.
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The lines x—¢ = constant and x+¢ = constant are the characteristics of
the differential equation (6.1). The value of u(x, t) at the nodal point
(xm, t») is obtained from (6.16) as

Xm4-ta
Wi t) = 5 lm=t)Hfrnt 45 [ sy (67

Xm—1a

It follows from (6.17) that the value u(xm, t.) is determined by prescribed
values of f(x) at the end points of the interval (xm— t», Xm+ts) and by pres-
cribed values of g(x) on that interval. The characteristics through the nodal
point (xm, 7,) are given by

X—1 = Xm—1,
X+t = Xptin | (6.18)

which meet the initial line # = 0 at the points x = x,,—1, and x = Xm+ .
The interval (X,,—ta, Xm+1,) is finite and of length 2t,. The characteristics
are sketched in Figure 6.1. The triange PAB is called the region of deter-
mination of the analytic solution at the nodal point (x,, t,). Thus, we find
that the initial data outside the interval (x,,— ta, Xm-+1,) does not influence
the solution at the nodal point (xm, 1,).
t
+»

P(Xm ,tn,

A(Xm"*n) B(Xm‘.’fn)

Fig. 6.1 Characteristics for the wave equation

We now examine the region of determination of the approximate solution
um obtained with the help of the difference scheme (6.7). The lines through
the nodal point (x,,, ¢,) with slopes +p play the role of the finite-difference
characteristics. The slopes of these lines depend only on the choice of # and
k. The finite-difference characteristics are given by

I=pX = th=pXm t+px = tat+pxm (6.19)
which meet the initial line 1 = 0 at the points x = Xm—ts/p and
X=Xxm +1ta/p. Consequently, the approximate solution un depends upon
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Thus, the difference scheme (6.21) will be stable if

1

(i) a<4l, T> 3

sp >0,

.. 1 1 2 ]—40)
(i) o < T < T,0<p <(1_41 (6.27)

When ¢ = 0, the above conditions reduce to the von Neumann conditions.

We nqw use (6.22) and (6.27) to determine accurate and stable methods.
We find that the values 7 = 1/4, 0 < 1/4 give unconditionally stable
methods

[l+ (o— j:—- p’)Sg 87 um = p282 ulh (6.28)
of order (k2+A42), and if 0 = 0, then the von Neumann method is obtained.
The values ¢ = 7 = 1/12 give high accuracy method

[ 1+ (1= p5% Jp2ut = piotut (6.29)

of 0(k*-+h*) which is stable for 0 < p<1

The solution of (6.1) with the help of the implicit schemes will require at
each time step the solution of a tridiagonal system of linear algebraic
equations. The values on the line ¢ = k can be obtained by using (6.11).

Example 6.1 Solve the initial boundary value problem

Pu _ Pu
o — dx2
. ou (x, 0) .
u(x,O)-smﬂx,Tt————_—o, 0<x<1
u(0, 1) = 0, u(l, £)=10 t=0

using the following methods
(@) & 1, = p2,.,
2
(b) (1— -’—’2—33 )8:2 um = p28% um
1

T.

4

with h=l3 and p =

The nodal points are
Xm=mh,t, =nk, 0<m<3n= 0,1,2,..

bl

The difference method (a) forp = —;- becomes

, S
um+1 —_ —u:' I+ *4- (um—]+6u:1 +ul':!+l)
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The initial and boundary conditions become

N R

0 .
1, = sin mmh or ul =

2 Y 2
3u?n ,l"— o -
=Oor"——§—k—'—‘-m—=0,um' =4, 1<m<2
uty = 0,u3 = 0, n = 0,1,2, -
We have
- 1
n=0, Uy = —llm1+"z (u?n-1+6u?n +udp) 1Sm <2
- 1
m=1, = —ur +3 (uo +6ut +u3)
or ul = —% (w0 +6ul +u2)
= 0.7578
- 1
m=2, w = —uz' + vy (u‘{ —l—6u‘z’ +u3)
or uy = —% (ul 16ul+us )
= 0.7578
n=1,ub= —um - %— (u»'n—1+6u}n+u.'u+x) 1<m<2

m=1,ul= —ul +—lz (uh +-6ui +ul)
= 0.4601
m=2, 1= —uy + —} (u} +6ub -F13)
= 0.4601
The method (b) for p = - becomes

1 n 2.n
[‘ — —-8— 8’{}8% Um &= —14‘ 8-‘ tm

or  —im ot =i = 10up " -+168m G )
This is a 2-step method and we require the solution values at 7 = k to start
the computation.

We have
’ 2 2 2 0 [ I 0
n= 1, — Um=-=1 ‘{' 10t — tm 1 = — 10um ‘l‘ | 611}n"}‘(1!:11—| _“lhn-lrl)
1<m=2
2 2 0 2
m=1,- ll(z, 41001 — u2 = = ]OH(: +- 161!: 'l‘(tlo'|“1lz)

-

m = 2 — b u = —-l()ug-!—l6ul‘-—}-(u?+u(§)
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which may be expressed in the form v
u;l,.l'l-:l = 2(1 —2p2)“;,.i11+p2[uﬂi I,m +u7—l,m ']"ll;',m‘{—l—'l' U;',m-‘l] u;’ml (6-34)
It is casily verified that the truncation error of (6.34) is given by

1 dy 0 a4
]‘,’;” = ——2— I\,2II [(p _l)( ax‘ +(()_;'l4)+2p dle:" 2]4 (6.35)
which is of order (k2-+72).
To examine the stability of (6.34), we consider the solution of the form
ulm = exp (ipnk) exp (i0,/h) exp (ip,mh) (6.36)
where 8, and ¢, are arbitrary real numbers and 1 may be a complex para-
meter. We put A = pk, 0 = 0,/;, p = p,h.
Substituting (6.36) into (6.34) and simplifying the result we get

sm--é\- = p’(sm2 +sin2 ) (6.37)

Since, 0 < sin? p/2, sin? 6/2 < 1, the method (6.34) will be stable if,
0<p<1V2

The second initial condition in (6.32) may be used to find the values on
the plane t = k in a manner as obtained in (6.11).

6.3.2 Implicit difference schemes
A simple differénce equation of (6.31) based on Padé approximation to
(6.33) can be written as

(1478)71 8l ulm = p(1+083)1834-(1+083)18] ul (6.38)
The order accuracy of (6.38) is (k2+h?) and 7, ¢ are arbitrary parameters.
Simplifying (6.38), we get
[(1+083)(1 +087) — 7p2(&3 + 8 +20828%) 1%}
= pA82+82420522)u] (6.39)
The above scheme can also be written as
(14+(o—7p?) 8][1+(0—7p2)87] St/ = pA(82+82+2082382) u}w  (6.40)

The added term 72p*32828%/, is of higher order and does not alter the
accuracy but enab]eqa factorization of the operator on “the left-hand side of
(6.39). In order to determine the accuracy of the two parameter family of
difference scheme (6.40), the Taylor expansion of the terms on both sides of
(6.40) is carried out about the reference node (lh, mh, nk). If the resulting
terms on the left-hand side are subtracted from those\On the right hand
side, the truncation error is found to be

4, o4
Tin = lzkz[(12 0)(-2——)5-[-3—;:),""—}—(7 lz)pz(m‘),m]k (6.41)
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where we have used the relations

stu (h, mh, nk) = p*C@-+ 1_12 pHCH+2CE)
1
+igp° PUCE+3CO+..
(82480 (Ih, mh, nk) = CP+ 13 C‘ + :_3_67) CO+.. .

8282u(lh, mh, nk) = C‘(0)+_l_ cO+. ..
(82+82) 8% u (b, mh, nk) = pXC§"+2C")+

—l-p2 ((p*+1) CO+U+3pHCP) +. . .
828287 1 (lh, mh, nk) = p3Cs 4., (6.42)

and

(__z__“a’“
@ = 55+ )

ou B‘u
( ) —
"‘( +3y‘) -
(d u O%u )
8y6

(0) — -
Ci h (ax2 gyZ )Im

o = I8 24 [ Bzu
= a 2ay de i, m

Thus all members of the family of difference scheme (6.40) for arbitrary 7
and o have an order of accuracy (k2-+42). The parameters 7 and o should be so
chosen that difference scheme (6.40) is not only accurate but also stablc.
The method of von Neumann can be applicd to cxamine the stability of

(6.40). Substituting (6.36) into (6.40), we find that the difference scheme will
be stable if

CIG) = [16

é
siu’-i- +sin2—%—8o sin’-g- sin? % ’
0 < p? <1 (6.43)

(1 Ho=p* )S‘n20 )(1—4(6 7p?) sin? ; )

where 0 < sin? 8/2, sin? /2 < 1. Thisis satisfied if

2p3(1 —40)

' <
0< 11 Z4o)rampyp <!
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and

O U= S uill " = =2, (= 1+ (o= 7p) = 20) 83

(i) [14(o— ) 81 (urm' = 207 m +ul'm))

=unil P +2082) uff (6.54)
I,m — sz v t,m N

In all the split formulas, the intermediate boundary conditions must be

obtained explicitly from the second formula in order to maintain the accuracy

of the difference schemes, For example, in (6.54) the intermediate boundary
conditions are given by

*n4-1 2) &2 nil A n n—I P2 2y . n
tum = (1+(o—7p?) §;) (grm =28tm+tgim )— o—1p? (l+203y)g,,,,,
(6.55)

where the appropriate values gi'» are obtained from (6.32).

Example 6.2 Solve the initial boundary value problem
Pu Py
or — oxx g7
u(x, y, 0) = sin #x sin =y

ou(x, y, 0)

= < <
u=90

on the boundary of the unit square for ¢ > 0, using the Lees split’

(1— 7;1,232) Wi = 20l ufm") = p? (524+82)

n4- ] l ne—
(1— -;j‘-pzaf)u/,,i' = un' - —4—p25,3 Quiwm ~ urm')

. 1 1
with 4 = 3—andp—-2—-

The nodal points are
xi = 1h, y,, = mh, t, = nk, 0<Iim<3n=01,2 ..
The initial and boundary conditions become

1 1
. . Ulm—ur,
Ul m = sin =lh sin mmh, ~'"2k“'” =0

wom=uo=0 0</5Lm<3

The Lees method for p = —;- may be written as

* *nil *n--1 n—1 2 n-1 n 2. n
—UIZT,L:'*‘ ISUI,'IIMr - lll-':-l,m = — 16lll,m +8x Ul.m +32U1,m‘ 28x Ul,m

+ 482 +82)uf m
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I-1 i1 41 *nil 2 o0 2 -1
- ll;::zx—l‘}‘lsllr,m —Upma1 = 10tpm  — 28y lll,m‘{’av Ulm

*nil *)i

wom = 0,10 =0 1<lm<?2

The solution values at the level ¢ = k& may be determined from the equa-
tion

a H' ‘) n
Ill m = U, ln‘i k— ”l = 1\2 ll/ +0(1\3)
or “I',m = ll?,m‘l“ ‘L—PZ(S%-‘J(‘ 8:;') ll?,m 1 < [, m = 2
Wc have
ll;),m = sin =/l sin mmh 1l <<l,m<?2
)y = —?’— 1y == 3
1,1 4 y U2,1 4
o _ 3 o _ 3
u2,1 = ?llz,z 2
1
Ull,m = u?,m‘{‘ ’8— (8,3"‘8;) u?,m 1 < I, m< 2

1 0 1 o 0 0 0 0
i, = ui1- < (uou+uz1 -+ 2-Fuio—4ui 1)

1t 16
T IR TR N R
2,1 16’ L2 16’ 2,2 16

n= ] —ll[.zl m—+ 18!!;311_1173-1 m
= - 16lll m+8v U, m+ 32”[ m™= 28 ll; m+4(8x+8y)ul m

l=1m= 1,—140,1+18u|,1—uz,%

= —l6u?,1+3iu?,|+32u},|—25 ul 1+ 4(82+83) uls
15

*
18ufi-u3l = T

l1=2,m= l,-u:.21+18u5.21-*u;.2|
= — 16631 +82 131+ 32ub 1= 262 ul -+ 4(82+8D)uza
15
8

*2 15 w2 _ 15
L= 736 Y21 T 136
A5 e 15
2= T3¢ ¥ 136

»2
—ur3+18u3% =
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2 2 2
— i m—1+ 18Ul m— Ui,m+1

= 16012282 Ul m+32 tuim 1<Lm<?2
I=1,m=1,~ubo+18uf.a—ui2 = 16us1—28} ui 1+ ui,s
291

181112,1 - u12,2 = 73—6—

I =1,m=2, —u%,1+18uf,z—u?,3 = 16u.’f§-—28}u},2+3§u?,z

29

—ul+18ul2 = lTé
iy = —223% — 0.1259
2 291 _ oo,

e = 5375 = 0.1259
, 291 _

U1 = 73T2- = 0.1259
w2 = 323?—115 = 0.1259

6.3.4 Results from computation
We consider Equation (6.31) together with the initial conditions
u(x, y, 0) = sin nx sin 7y
du

37‘_‘0 for0<x,y<1,t=0 (6.56)

and the boundary condition
on the boundary of the unit square for ¢ > 0. The theoretical solution of
this problem is

u(x, y, t) = sin. 7x sin 7y cos 4/2nt
We take & = 1/11 and k = p/11, where p satisfies the stability condition.
Using the Lees split (6.51) and choosing the values of ¢ and 7 from Figure
6.3, we compute the numerical solution. The error values (the difference
between the numerical solution and the theoretical solution) at one of the
four grid points nearest to the centre of the unit square are set out in Table
6.2. We find that the differenc- scheme corresponding to ¢ = 7 = 1/8 gives
less error in comparison to other difference schemes of accuracy of 0(k2+A4?).
The Fairweather-Mitchell formula which is of accuracy (h*+k*) gives
smaller error for all values of 4 and k satisfying the stability condition
0 < p< +/3—1. For the values of h and k which violate the stability -
condition, the Fairweather-Mitchell formula gives poor results after certain
value of 7 whereas the scheme corresponding to o =7 =1/8 gives stable and
accurate resuits.
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6.4 DIFFERENCE SCHEMES FOR EQUATIONS IN THREE
SPACE VARIABLES WITH CONSTANT COEFFICIENTS

We derive difference schemes for the wave equation
o 0 | ' |, O
o = Gt t am (¢:5D

subject to the initial and boundary conditions

u(x, y, z, 0) = fi(x, y, z)
a s ¥y 2, 0
-ﬂ—‘a]_’i__)‘ =f2(x’ Vs Z), (xy Y, Z)ER
ux, y,z,t) = gx, y, z, 1),
(x, 9,2, DEIRX[0 <t < T] (6.58)
where ¢ is the boundary of
R=[0<xy1z<]]

We assume that the nodal points in R are given by (I, Lh, Lih, nk),
hy b, 3=01,2,..., M,n=0,1,2,..., N.

The difference equation for (6.57) based on Padé approximation can be
written as

(1478187 = p2[(1+08)~182+ (14 082)~182 + (1+0d2)~182u"  (6.59)

where u” stands for ul,.1,1, which is the approximate value of u at (Lh, Lh,
lgh, nk)

The order of accuracy of (6.59) is of 0(k2+A*) for arbitrary ¢ and 7 and it
increases to 0(k*4-h?*) for o = 7 = 1/12. Simplifying (6.59), we obtain

[1-+ (o= 7p2) L33+ (0% — 207p) ¥.8387 + (03 — 3027p?) [183187 0

= pI 8242018787 4 3020183 (6.60)
where
Y82 = 82482482
Y8385 = 8387483924828,
and

IT8% = 825282

The difference scheme (6.60) to the ordcr of accuracy of (k*+/i%) for arbit-
rary o and 7 with the factorized operators on the left side can be written in
the form

(11 -1~(6—'rp3)83])53n" - /12[23.%'1-202355_3-!'30’1'73?114" (6.61)
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We may use the von Neumann method to show that the difference scheme
(6.61) is unconditionally stable foroc < 1/4, v > 1/8. Forr > 1/8, ¢ =0
and 7 = 1/4, o arbitrary, we may write (6.61) as

([~ 7p28 )8 = pA( X832y (6.62)
and
n[ 1+[a— + pz]zsg](un+l+un-l) = 217{ I+ (a+ + ,,:)s;;}un
(6.63)

respectively. From application view point, itis computationally economical
to write (6.61) as an ADI scheme. The D’ Yakonov splitting is given by

@) [14(e—7p8Turntt = p¥ 8342075282 43620157 m
“HI[1 (o —7p2)83(2un— um-1
(i) [14(o—Tp2)8iJur*ntl = yntl

(iii) [14(e—7p)SJuntt = yrsntl (6.64)

where u***! and u****! are intermediate values. The Lees split for (6.62)
can be written as

() [1=7pJurmt = p2¥8%um
(ii) [I—szsfa]u**"'“ = yrntl
Gii)  [1—7p22(umti= 2unt-ynmt) = yrentl (6.65)
Another possible split of (6.62) is of the form

O D=t = [ Lp(e3s] | e
(i) [1- .,pzs_‘%]u**nu = gt p’Sﬁ u"
i) 1=t = 2wt = geimit— L (6.66)
The difference scheme (6.63) can also be w;-itten as

@) [1+ (a— 4 pz)szj et

8 ][1+ (a+ 1 pz)az] -

(ii) [1+ (0— + ,,z)es§1 et

= 2[l+ (a+ —i—pz

N
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(iii) [1+ (a— —:11- p’-)Sf] (urti4unt)

2
=|1+7 TALE A [1+(—3p2+0)33-] un
gl e

(6.67)
The intermediate boundary conditions can be determined again easily. For
example, in (6.66) they are given by

() umnht = [1—7p383 N1 —7p8] (g1 = 27+ + "
(ii) ur*rt! = U_,.stﬂ(gnﬂ_zgn_;_gn—l)_}. % g" (6.68)

6.5 DIFFERENCE SCHEMES FOR EQUATIONS WITH VARIABLE
COEFFICIENTS

6.5.1 One space dimension
Consider the linear hyperbolic equation
a2 22
i = an D = (6.69)

In the region R = [0 < x < 1]X[0, T], subject to the initial and boundary
conditions (6.2) and (6.3). We replace (6.69) at the nodal point (mh, nk) by
the difference scheme

(1+780)-182ul = pam(1+08)187 un (6.70)
where
an = a(Xm, tn)

The approximation represented by (6.70) has truncation error of order
(k2+h?) for arbitrary o and 7 and this order increases to (k*+-#*) for
c=r1=1/12. :

Multiplying (6.70) with (l+1'33) and simplifying, we obtain
821~ rp2am Q5" 2l = pPam Q7 O ul, 6.71)
where
(14083 = 0s
which may also be written as
 -rpatt 07 2unh

= 21 —rp%al Q5 ' 8 up—[1—pai ' 07 82lun '+ pra Q7 8% vl (6.72)



